首页 > 科普 > 结构力学

结构力学

来源:大科普网 | 时间:2013-06-06 | 关注度:67

结构力学课本结构力学(Structural Mechanics)是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。 结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法 ,成为利用计算机进行结构计算的理论基础。

与结构力学有关的学科主要有理论力学、材料力学、弹性力学、塑性力学及工程结构等,广义的结构力学包括材料力学、杆系结构力学、应用弹性力学及塑性力学,但一般常把结构力学专指为杆系结构力学,而其他的结构形式,如板、壳等,习惯上属于弹性力学的研究对象。

结构力学 - 发展简史

古代建筑的辉煌成就人类在远古时代就开始制造各种器物,如弓箭、房屋、舟楫以及乐器等,这些都是简单的结构。随着社会的进步,人们对于结构设计的规律以及结构的强度和刚度逐渐有了认识,并且积累了经验,这表古代建筑的辉煌成就中,如埃及的金字塔,中国的万里长城、赵州安济桥、北京故宫等等。尽管在这些结构中隐含有力学的知识,但并没有形成一门学科。

到19世纪初,由于工业的发展,人们开始设计各种大规模的工程结构,对于这些结构的设计,要作较精确的分析和计算。因此,工程结构的分析理论和分析方法开始独立出来,到19世纪中叶,结构力学开始成为一门独立的学科。

19世纪30年代后,由于大量修建铁路,相继出现连续梁和各种桁架等结构形式,促进了连续梁和桁架的计算理论的发展。美国的S.惠普尔在1847年首先提出了桁架的计算理论,19世纪中出现了许多结构力学的计算理论和方法。法国的纳维于1826年提出了求解静不定结构问题的一般方法。这些理论形成了结构力学的初步基础。从19世纪30年代起,由于要在桥梁上通过火车,不仅需要考虑桥梁承受静载荷的问题,还必须考虑承受动载荷的问题,又由于桥梁跨度的增长,出现了金属桁架结构。

从1847年开始的数十年间,学者们应用图解法、解析法等来研究静定桁架结构的受力分析,这奠定了桁架理论的基础。1864年,英国的麦克斯韦创立单位载荷法和位移互等定理,并用单位载荷法求出桁架的位移,由此学者们终于得到了解静不定问题的方法。基本理论建立后,在解决原有结构问题的同时,还不断发展新型结构及其相应的理论。19世纪末到20世纪初,学者们对船舶结构进行了大量的力学研究,并研究了可动载荷下的粱的动力学理论以及自由振动和受迫振动方面的问题。

19世纪后半期,钢结构已被广泛应用,结构计算成了结构设计的必要步骤,计算理论也取得了很大进展。1864年J.C.麦克斯韦提出了超静定结构的力法方程(见力法)。1879年A.卡斯蒂利亚诺在他的着作中论述了利用变形势能求结构位移和计算超静定结构的理论。1874~1885年间,O·莫尔发展了利用虚位移原理求位移的一般理论,至此分析结构位移及超静定结构的一般理论日臻完善。

20世纪初,航空工程的发展促进了对薄壁结构和加劲板壳的应力和变形分析,以及对稳定性问题的研究。同时桥梁和建筑开始大量使用钢筋混凝土材料,这就要求科学家们对钢架结构进行系统的研究,在1914年德国的本迪克森创立了转角位移法,用以解决刚架和连续粱等问题。钢筋混凝土结构逐渐被用于工程结构,并出现了刚架结构。于是以位移为基本未知数的计算刚架的方法逐渐发展。A.本迪克森在1914年最先提出了转角位移法。1932年H.克罗斯首创力矩分配法。30~50年代期间,各国学者发展了各种形式的渐近法,其中中国学者蔡方荫在变截面刚构分析方面也作出了贡献。 后来,在20~30年代,对复杂的静不定杆系结构提出了一些简易计算方法,使一般的设计人员都可以掌握和使用了。

到了20世纪20年代,人们又提出了蜂窝夹层结构的设想。根据结构的“极限状态”这一概念,学者们得出了弹性地基上粱、板及刚架的设计计算新理论。对承受各种动载荷(特别是地震作用)的结构的力学问题,也在实验和理论方面做了许多研究工作。随着结构力学的发展,疲劳问题、断裂问题和复合材料结构问题先后进入结构力学的研究领域。20世纪50年代出现了电子计算机后,结构力学的发展开始进入崭新的阶段。结构分析的矩阵法等数值方法因此获得了迅速的发展,并编制了各种结构分析程序。随后,在非线性分析、非弹性分析、结构抗震分析、结构抗环境作用分析等方面都取得了进展。更由于实验技术的进步,结构模型试验分析方法也取得了进展。 20世纪中叶,电子计算机和有限元法的问世使得大型结构的复杂计算成为可能,从而将结构力学的研究和应用水平提到了一个新的高度。

结构力学 - 研究内容

相关书籍结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。所谓工程结构是指能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。 就基本原理和方法而言,结构力学是与理论力学、材料力学同时发展起来的。所以结构力学在发展的初期是与理论力学和材料力学融合在一起的。结构力学的任务是:研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。

观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。

同样材料力学、弹性力学、塑性力学等也研究杆件,但主要以各部分的应力为对象。由于计算技术的进步,处理问题的方法更加通用,现代结构力学研究的对象应该包括杆系、板、壳和连续体。过去,结构力学的任务偏重于结构分析,应以结构优化设计为主,研究如何选择合理的截面,以达到结构的重量轻、造价低的目的。

结构力学 - 计算简图

在结构分析中,通常用简化的图形代替实际结构,称为计算简图。结构可按计算简图的几何特性及受力特性分成平面结构和空间结构,它们又可分为梁结构、桁架结构、拱结构(见)、刚架结构等,以及上述各种结构相互组合而成的组合体系。

结构力学 - 分析方法

刚架结构主要有图解法、解析法及能量法等。

①图解法通过图形表示作为矢量的力,并基于矢量的图解原理求解静定结构的反力和内力。

②解析法可分为力法、位移法和混合法。力法基于静力平衡方程解静定结构,并在补充变形协调方程后解超静定结构。位移法以位移为基本未知数,基于转角位移法及静力平衡方程求解,然后再由位移求反力和内力。混合法是同时应用力法和位移法两种概念求解的方法。

③能量法基于虚功原理、能量守恒定律、最小功原理等求解各种复杂问题(见能量原理)。此外,还应用各种数值分析方法(见有限元法)。