遗传学
遗传学(Genetics)——研究生物的遗传与变异的科学。研究基因的结构、功能及其变异、传递和表达规律的学科。遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。
遗传学是研究基因及它们在生物遗传中作用的科学分支。这就是为什么后代总是与他们的双亲相似的原因。遗传学最早的应用在有历史记载之初就已经出现了,即驯养动物及植物的选择育种。遗传信息以化学方法被编码在DNA(脱氧核糖核酸)中。基因组学是研究特定物种所有DNA的学科。
直到1865年,才由格雷戈尔.孟德尔首先记录了豌豆某些特性的遗传模式,表明它们遵守简单的统计学规律。虽然并不是所有的特性都显示出这种孟德尔遗传,他的工作说明将统计学应用于遗传将会有很大帮助。从那时起,出现了许许多多更复杂的模式。由他的统计分析中,孟德尔定义了一个概念:遗传的基本单位——等位基因。他描述的等位基因类似于现在的基因。而现在等位基因的意思是一个特定基因的特定实例。直到孟德尔死后,20世纪初另外的科学家重新发现这个定律之后,孟德尔的工作的重要性才被大家了解。
孟德尔没有发现基因的物理性质。现在我们知道遗传信息通常是由DNA携带的(某些病毒的遗传信息储存在RNA中)。操纵DNA可以随之改变生物的遗传性状。 这些基因包含了制造蛋白质的信息,蛋白质最终导致了生物表型的变化。 以某种观点看来,在分子层面上,生命被定义为DNA多聚核苷酸使得自身延续的一组策略。这个定义基于RNA世界假说。
遗传学 - 研究范围
包括遗传物质的本质、遗传物质的传递和遗传信息的实现3个方面。遗传物质的本质包括它的化学本质、它所包含的遗传信息、它的结构、组织和变化等。遗传物质的传递包括遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等。遗传信息的实现包括基因的原初功能、基因的相互作用、基因作用的调控以及个体发育中的基因的作用机制等。
遗传学 - 学科分支
遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。
一个受精卵通过有丝分裂而产生无数具有相同遗传组成的子细胞,它们怎样分化成为不同的组织是一个遗传学课题,有关这方面的研究属于发生遗传学。由一个受精卵产生的免疫恬性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。
从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。
微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。
更多的遗传学分支学科是按照所研究的问题来划分的。例如,细胞遗传学是细胞学和遗传学的结合;发生遗传学所研究的是个体发育的遗传控制;行为遗传学研究的是行为的遗传基础;免疫遗传学研究的是免疫机制的遗传基础;辐射遗传学专门研究辐射的遗传学效应;药物遗传学则专门研究人对药物反应的遗传规律和物质基础,等等。
从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对群体中的基因频率和基因平衡的影响;生态遗传学研究的是生物与生物,以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论;进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。
从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。
遗传学 - 研究方法
杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥,便是由于生活周期短和体形小而常被用作遗传学研究的材料。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料。
生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。
遗传学 - 发展简史
人类在新石器时代就已经驯养动物和栽培植物,而后人们逐渐学会了改良动植物品种的方法。西班牙学者科卢梅拉在公元60年左右所写的《论农作物》一书中描述了嫁接技术,还记载了几个小麦品种。533~544年间中国学者贾思勰在所着《齐民要术》一书中论述了各种农作物、蔬菜、果树、竹木的栽培和家畜的饲养,还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。改良品种的活动从那时以后从未中断。
许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。
孟德尔的工作结果直到20世纪初才受到重视。19世纪末叶在生物学中,关于细胞分裂、染色体行为和受精过程等方面的研究和对于遗传物质的认识,这两个方面的成就促进了遗传学的发展。从1875~1884的几年中德国解剖学家和细胞学家弗莱明在动物中,德国植物学家和细胞学家施特拉斯布格在植物中分别发现了有丝分裂、减数分裂、染色体的纵向分裂以及分裂后的趋向两极的行为;比利时动物学家贝内登还观察到马副蛔虫的每一个身体细胞中含有等数的染色体;德国动物学家赫特维希在动物中,施特拉斯布格在植物中分别发现受精现象;这些发现都为遗传的染色体学说奠定了基础。美国动物学家和细胞学家威尔逊在1896年发表的《发育和遗传中的细胞》一书总结了这一时期的发现。
关于遗传的物质基础历来有所臆测。例如1864年英国哲学家斯宾塞称之为活粒;1868年英国生物学家达尔文称之为微芽;1884年瑞士植物学家内格利称之为异胞质;1889年荷兰学者德弗里斯称之为泛生子;1883年德国动物学家魏斯曼称之为种质.实际上魏斯曼所说的种质已经不再是单纯的臆测了,他已经指明生殖细胞的染色体便是种质,并且明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。
孟德尔的工作于1900年为德弗里斯、德国植物遗传学家科伦斯和奥地利植物遗传学家切尔马克三位从事植物杂交试验工作的学者所分别发现。1900~1910年除证实了植物中的豌豆、玉米等和动物中的鸡,小鼠、豚鼠等的某些性状的遗传符合孟德尔定律以外,还确立了遗传学的一些基本概念。1909年丹麦植物生理学家和遗传学家约翰森称孟德尔式遗传中的遗传因子为基因,并且明确区别基因型和表型。同年贝特森还创造了等位基因、杂合体、纯合体等术语,并发表了代表性着作《孟德尔的遗传原理》 。
从1910年到现在遗传学的发展大致可以分为三个时期:细胞遗传学时期、微生物遗传学时期和分子遗传学时期。
细胞遗传学时期(1910~1940)
从美国遗传学家和发育生物学家T.H.摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家G.W.比德尔和美国生物化学家E.L.塔特姆发表关于链孢霉的营养缺陷型方面的研究结果为止。这一时期通过对遗传学规律和染色体行为的研究确立了遗传的染色体学说。摩尔根在1926年发表的《基因论》和英国细胞遗传学家C.D.达林顿在1932年发表的《细胞学的最新成就》两书是这一时期的代表性着作。由群体遗传学、进化遗传学、古生物学等形成的进化的综合理论在这一时期也有很大发展。它们的代表性着作有:英国统计学家R.A.费希尔的《自然选择中的遗传理论》 ,美国遗传学家S.赖特的《孟德尔群体的进化》,英国生理学家和遗传学家J.B.S.霍尔丹的《进化的原因》 ,美国遗传学家T.多布 然斯基的《遗传学和物种起源》 (1937),美国古生物学家G.G.辛普森的《进化的节奏和型式》 。这一时期中虽然在1927年由美国遗传学家H.J.马勒和1928年由L.J.斯塔德勒分别在动植物中发现了X射线的诱变作用,可是对于基因突变机制的研究并没有进展。基因作用机制研究的重要成果则几乎只限于动植物色素的遗传研究方面。
微生物遗传学时期(1940~1960)
从1941年比德尔和塔特姆发表关于脉孢霉属中的研究结果开始,到1960~1961年法国分子遗传学家F.雅各布和J.莫诺发表关于大肠杆菌的操纵子学说为止。在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。
分子遗传学时期
从1953年美国分子生物学家J.D.沃森和英国分子生物学家F.H.C.克里克提出DNA的双螺旋模型开始,但是50年代只在DNA分子结构和复制方面取得了一些成就,而遗传密码、mRNA、tRNA、核糖体的功能等则几乎都是60年代才得以初步阐明。分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。
遗传学 - 研究意义
正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬菌体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。
免疫学在医学上极为重要,已有相当长的历史。按照一个基因一种酶假设,一个生物为什么能产生无数种类的免疫球蛋白,这本身就是一个分子遗传学问题。自从澳大利亚免疫学家F.M.伯内特在1959年提出了克隆选择学说以后,免疫机制便吸引了许多遗传学家的注意。目前免疫遗传学既是遗传学中比较活跃的领域之一,也是分子遗传学的活跃领域之一。
在分子遗传学时代另外两个迅速发展的遗传学分支是人类遗传学和体细胞遗传学。自从采用了微生物遗传学研究的手段后,遗传学研究可以不通过生殖细胞而通过离体培养的体细胞进行,人类遗传学的研究才得以迅速发展。不论研究的对象是什么,凡是采用组织培养之类方法进行的遗传学研究都属于体细胞遗传学。人类遗传学的研究一方面广泛采用体细胞遗传学方法,另一方面也愈来愈多地应用分子遗传学方法,例如采用遗传工程的方法来建立人的基因文库并从中分离特定基因进行研究等。从此,许多遗传学分支的研究都采用了分子遗传学手段,特别是重组DNA技术。即使是有关群体的遗传学研究也受分子遗传学的影响,进化遗传学研究中的分子进化领域便是一个例子。
遗传学 - 实践意义
遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显着的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。
遗传学 - 应用
遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。
美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显着的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到了应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。这些主要是细胞遗传学时期研究成果的应用。
40年代初,抗菌素工业的兴起推动了微生物遗传学的发展,微生物遗传学的发展又推动了抗菌素工业以及其他新兴的发酵工业的进步。遗传学的初期应用限于诱变育种。随着微生物遗传学研究的深入,基因调控作用的原理被成功地应用到氨基酸等发酵工业中。此外杂交、转导、转化等技术的采用也增加了育种的手段。
70年代体细胞遗传学的发展进一步增加了育种的手段,包括所谓单倍体育种以及通过体细胞诱变和细胞融合的育种等。这些手段的应用将有可能大大地加速育种工作的进程。特别是遗传工程开辟了遗传学应用于生产实践的新纪元,应用遗传工程方法进行干扰素等生物制剂的生产将使生产成本显着降低。
遗传学研究也同人类本身直接有关。由于人类遗传学研究的开展,特别是应用体细胞遗传学和生化遗传学方法所取得的进展,对于遗传性疾病的种类和原因已经有很多了解;产前诊断和婴儿的遗传性疾病诊断已经逐渐推广;对于某些遗传性疾病的药物治疗也在研究中。加上遗传咨询等措施的运用,遗传性疾病对人类的危害将会日益受到遏制。免疫遗传学是组织移植和输血等医学实践的理论基础。
药物遗传学和药物学有密切的关系。毒理遗传学关系到药物的安全使用和环境保护。用遗传工程技术对遗传性疾病进行基因治疗也正在进行探索。人类遗传学研究也是优生学的基础。遗传学研究为致癌物质的检测提供了一系列的方法。虽然目前治疗癌症还没有十分有效的方法,但在环境污染日益严重的今天能够有效地检测环境中的致癌物质,便是一个重大的进展。癌症患病的倾向性是遗传的,癌症的起因又同DNA损伤修复有关,近年来癌基因的发现进一步说明癌症和遗传的密切关系,所以从长远观点来看,遗传学研究必将为全面控制癌症作出贡献。
许多遗传学分支的研究都采用了分子遗传学手段,特别是重组DHA技术。即使是有关群
体的遗传学研究也受分子遗传学的影响,进化遗传学研究中的分子进化领域便是一个例子。
近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。
遗传学 - 遗传的分子基础
DNA和染色体
基因的分子基础是脱氧核糖核酸(DNA)。DNA由核苷酸相互连接而形成的链分子,其中的核苷酸有四类:腺苷酸(A)、胞嘧啶(C)、鸟苷酸(G)和胸腺嘧啶(T)。遗传信息就储存在这些核苷酸序列中,而基因则以连续的核苷酸序列存在于DNA链中。病毒是唯一的例外,有一些病毒利用核糖核酸(RNA)分子来代替DNA作为它们的遗传物质。
DNA通常以双链分子的形式存在,并卷曲形成双螺旋结构。DNA中的每一个核苷酸都有自己的配对核苷酸在相反链(对应另一条链)上,其配对规则为:A与T配对,C与G配对。因此,双链中的每一条链都包含了所有必要的遗传信息。这种DNA结构就是遗传的物理基础:DNA复制通过将互补配对的双链分开并利用每条链作为模板来合成新的互补链,从而达到复制遗传信息的目的。
不同基因沿着DNA链线性排列形成了染色体。在细菌中,每一个细胞都有一个单一的环状染色体;而真核生物(包括动物和植物)则具有多个线形染色体。这些染色体中的DNA链常常会非常长;例如,人类最长的染色体的长度大约为247百万个碱基对。染色体DNA上结合有能够组织和压缩DNA并控制DNA可接触性的结构蛋白,从而形成染色质;在真核生物中,染色质通常是以核小体为单位组成,每一个核小体由DNA环绕一个组蛋白核心而形成。一个生物体中的全套遗传物质(通常包括所有染色体中DNA的序列)被称为基因组。
仅含有一套染色体的生物被称为单倍体生物;大多数的动物和许多植物为双倍体生物,它们含有两套染色体(姐妹染色体),即含有每个基因的两个拷贝。一个基因的两个等位基因分别位于姐妹染色体上的等同的基因座,每一个等位基因遗传自不同亲本。
华尔瑟·弗莱明1882年的着作《细胞基质、细胞核以及细胞分裂》中描述真核细胞分裂的插图。染色体被复制、聚集和组织。随后,当细胞分裂开始时,复制后的染色体分别被分离进入两个子细胞中。性染色体是双倍体生物中染色体的一个例外,它是许多动物中的一种特异化的染色体,决定了一个生物体的性别。在人类和其他一些哺乳动物中,性染色体分为X和Y两类。Y染色体只含有很少量的基因,能够触发雄性特征的发育;而X染色体与其他染色体类似,也含有大量与性别决定无关的基因。雌性具有两个X染色体,而雄性具有一个Y染色体和一个X染色体。这种X染色体拷贝数的差别是性连锁的遗传病具有特殊遗传规律的原因。
繁殖
当细胞分裂时,它们的基因组被复制产生两份拷贝,每个子细胞继承其中的一份。这一过程被称为有丝分裂,它是繁殖的最简单形式,也是无性繁殖的基础。无性繁殖也能够发生在多细胞生物体中,子代从单一亲本处继承其基因组,即子代与亲本具有等同的基因组。这种子代与亲本在遗传上等同的现象被称为克隆。
真核生物常常利用有性繁殖来产生后代,其后代含有分别遗传自不同亲本的混合的遗传物质。有性繁殖的过程是一个介于基因组单拷贝(单倍体)和双拷贝(双倍体)之间的一个转换过程。双倍体生物通过不复制DNA的分裂来形成单倍体,所生成的单倍体子细胞含有每对姐妹染色体中的任意一个。两个单倍体细胞融合并将各自的遗传物质组合在一起来重新生成一个含配对染色体的双倍体细胞。多数动物和许多植物在它们的生命周期的多数时间内是双倍体,只有生殖细胞为单倍体形式。
虽然细菌没有单倍体/双倍体的有性繁殖方式,它们也有许多获得新的遗传信息的手段。一些细菌能够发生接合,将一小段环状DNA传递到另一个细菌细胞内。细菌还能够从环境中摄入DNA片断,并将之整合到自己的基因组中,这种现象被称为转化。这些进程导致了基因的水平转移,即无亲缘关系的生物体之间进行遗传信息的传输。
重组与连接
染色体之间的互换和双互换。染色体的双倍体使得位于不同染色体的基因在有性繁殖期间能够独立地分配并通过重组形成新的基因组合。在同一条染色体上的基因理论上不会发生重组,但通过染色体互换则可以达到。在互换过程中,染色体交换DNA片断,有效地将染色体之间的等位基因重新分配。染色体互换通常发生在减数分裂期间(旨在生成单倍体细胞的一系列的细胞分裂过程)。
染色体上两个给定位点之间发生染色体互换的可能性与这两个位点之间的距离相关。对一个任意长的距离,由于互换的可能性足够高,使得相隔该距离的两个基因的遗传无相关性。对于两个接近的基因,由于互换的可能性较小,则基因之间会发生遗传连锁,即这两个基因的等位基因趋向于被一起遗传。一系列基因之间的连锁数量可以被组合在一起构成一个线性的连锁图谱来描述染色体上基因的排列顺序。
遗传学 - 基因表达
:DNA通过信使RNA作为中间载体编码蛋白质。
血红蛋白能够在哺乳动物血液中运输氧气。图中显示了血红蛋白在携氧和脱氧状态之间的结构变化。
单个氨基酸突变导致血红蛋白形成纤维。基因通常是通过生成所编码的蛋白质(执行细胞中大多数功能的复杂的生物大分子)来表现它们的功能性影响。蛋白质是由氨基酸所组成的线性链,而基因的DNA序列(通过RNA作为信息的中间载体)被用于产生特定的蛋白质的氨基酸序列。这一过程的第一步是由基因的DNA序列来生成一个序列互补的RNA分子,即基因的转录。
通过转录产生的RNA分子(信使RNA)被用于生产相应的氨基酸序列,这一转换过程被称为翻译。核酸序列中的每一组三个核苷酸组成一个密码子,可以被翻译为20种出现于蛋白质中的氨基酸中的一个,这种对应性被称为遗传密码。这种信息的传递是单一方向性的,即信息只能从核苷酸序列传递到氨基酸序列,而不能从氨基酸序列传递回核苷酸序列,这一现象被弗朗西斯·克里克称为分子生物学中心法则。
特定的氨基酸序列决定了对应蛋白质的独特的三维结构,而蛋白质结构则与它们的功能紧密相连。一些蛋白质是简单的结构分子,如形成纤维的胶原蛋白。蛋白质可以与其他蛋白质或小分子结合;例如,作为酶的蛋白质通过与底物分子结合来执行催化其化学反应的功能。蛋白质结构是动态的;例如,血红蛋白在哺乳动物血液中捕捉、运输和释放氧气分子的过程中能够发生微小的结构变化。
基因序列上的单个核苷酸变化(密码子改变)可能会导致所编码蛋白质的氨基酸序列相应改变。由于蛋白质结构是由其氨基酸序列所决定的,一个氨基酸的变化就有可能通过使结构失去稳定性或改变蛋白质表面而影响与该蛋白质其他蛋白质和分子的相互作用,而引起蛋白质性质发生剧烈的改变。例如,镰刀型细胞贫血症是一种人类遗传性疾病,是由编码血红蛋白中的β-球蛋白亚基的基因中的一个核苷酸突变所引起的,这一突变导致一个氨基酸发生改变从而改变了血红蛋白的物理性质;在这一疾病中,突变的血红蛋白互相结合在一起,堆积而形成纤维,从而扭曲了携带血红蛋白的红血球的形状。这些扭曲的镰刀状细胞无法在血管中通畅地流动,容易堆积而阻塞血管或者被降解,从而引起贫血疾病。
也有一些基因被转录为RNA分子后却不被翻译成蛋白质,这些RNA分子就被称为非编码RNA。在一些例子中,这些非编码RNA分子(如核糖体RNA和转运RNA)折叠形成结构并参与部分关键性细胞功能。还有的RNA(如microRNA)还能够通过与其他RNA分子杂交结合而发挥调控作用。
先天与后天
暹罗猫具有温度敏感型突变,从而引起毛色的不同。虽然基因含有生物体所需功能的所有信息,环境依然在确定生物体最终的表现型中发挥着重要作用;这种两面性被称为“先天与后天”,也可以说,一个生物体的表现型依赖于遗传与环境的相互作用。这种相互作用的一个例子就是温度敏感型突变:蛋白质序列中的单个氨基酸突变通常不会改变该蛋白质的行为和与其他分子的相互作用关系,但却能够使该蛋白质结构变得不稳定。在一个高温环境中,分子的运动加快,分子间的碰撞也加强,这就使得这一蛋白质的结构被破坏从而无法发挥它的功能;而在一个低温环境中,蛋白质结构却可以保持稳定并能够发挥正常的功能。这类突变所引起的改变在暹罗猫毛色的变化中可以被观察到。这种猫体内一种负责生产色素的酶含有一个突变,这个突变能够导致这种酶在高温时变得不稳定并失去其功能。因此,在猫皮肤温度较低处(如四肢、尾部、面部等)的毛色为深色,而较高处为浅色。
在人类遗传疾病苯丙酮尿症中,环境因素也具有重大的影响。导致苯丙酮尿症的突变破坏了机体降解苯丙氨酸的能力,导致具有毒性的中间产物分子在体内堆积,从而引起严重的进行性智能发育不全和癫痫。带有苯丙酮尿症突变的病人需要遵守严格的饮食,以避免摄入含苯丙氨酸的食品,才能保持正常的和健康的生活。
基因调控
转录因子与DNA结合,影响了所结合基因的转录。一个生物体的基因组含有数千个基因,但并不是所有的基因都需要保持激活状态。基因的表达表现为被转录为mRNA,然后再被翻译成蛋白质;而细胞中存在许多方式可以来控制基因的表达,以便使蛋白质的产生符合细胞的需求。而控制基因表达“开关”的主要调控因子之一就是转录因子;它们是一类结合在基因的起始位点上的调控蛋白,可以激活或抑制基因的转录。例如,在大肠杆菌细菌基因组内存在着一系列合成色氨酸所需的基因。然而,当细菌细胞可以从环境中获得色氨酸时,这些基因就不被细胞所需要。色氨酸的存在直接影响了这些基因的活性,这是因为色氨酸分子会与色氨酸操纵子(一种转录因子)结合,引起操纵子结构变化,使得操纵子能够结合到合成色氨酸所需基因上。色氨酸操纵子阻断了这些基因的转录和表达,因而对色氨酸的合成进程产生了负反馈调控作用。
多细胞生物中的基因表达的差异性非常明显:虽然各类细胞都含有相同的基因组,却由于不同的基因表达而具有不同的结构和行为。多细胞生物中的所有细胞都来源于一个单一细胞,通过响应外部或细胞之间的信号而不断分化并逐渐建立不同的基因表达规律来产生不同的行为。因为没有一个单一基因能够负责多细胞生物中的各个组织的发育,因此这些规律应来自于许多细胞之间的复杂的相互作用。这些过程都要通过基因调控来完成。
真核生物体内的染色质中存在着能影响基因转录的结构特点,常常表现为DNA和染色质的修饰形式(如DNA的甲基化),而且能够稳定遗传给子细胞。这些特点是“附加性”的,因为它们存在于DNA序列的“顶端”并且可以从一个细胞遗传给它的下一代。由于这些附加性特点,在相同培养基中生长的不同的细胞类型依然保持其不同的特性。虽然附加性特点在整个发育过程中通常是动态的,但是有一些,例如副突变(paramutation)现象可以被多代遗传,也是DNA是遗传的分子基础这一通用法则的极少数例外。
遗传学 - 与其它学科的关系
遗传学与生物化学的关系最为密切,和其他许多生物学分支学科之间也有密切关系。例如发生遗传学和发育生物学之间的关系;行为遗传学同行为生物学之间的关系;生态遗传学同生态学之间的关系等。此外,遗传学和分类学之间也有着密切的关系,这不仅因为在分类学中应用了DNA碱基成分和染色体等作为指标,而且还因为物种的实质也必须从遗传学的角度去认识。
各个生物学分支学科所研究的是生物的各个层次上的结构和功能,这些结构和功能无一不是遗传和环境相互作用的结果,所以许多学科在概念和方法上都难于离开遗传学。例如激素的作用机制和免疫反应机制一向被看作是和遗传学没有直接关系的生理学问题,可是现在知道前者和基因的激活有关,后者和身体中不同免疫活性细胞克隆的选择有关。
遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。
遗传学 - 细胞遗传学时期
大致是1910~1940年,可从美国遗传学家和发育生物学家摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家比德尔和美国生物化学家塔特姆发表关于链孢霉的营养缺陷型方面的研究结果为止。
这一时期通过对遗传学规律和染色体行为的研究确立了遗传的染色体学说。摩尔根在1926年发表的《基因论》和英国细胞遗传学家达林顿在1932年发表的《细胞学的最新成就》两书是这一时期的代表性着作。这一时期中虽然在1927年由美国遗传学家米勒和1928年斯塔德勒分别在动植物中发现了 X射线的诱变作用,可是对于基因突变机制的研究并没有进展。基因作用机制研究的重要成果则几乎只限于动植物色素的遗传研究方面。
遗传学 - 微生物遗传学时期
大致是1940~1960年,从1941年比德尔和塔特姆发表关于脉孢霉属中的研究结果开始,到1960~1961年法国分子遗传学家雅各布和莫诺发表关于大肠杆菌的操纵子学说为止。
在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。
遗传学 - 分子遗传学时期
从1953年美国分子生物学家沃森和英国分子生物学家克里克提出DNA的双螺旋模型开始,但是50年代只在DNA分子结构和复制方面取得了一些成就,而遗传密码、mRNA、tRNA、核糖体的功能等则几乎都是60年代才得以初步阐明。
分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料完成的;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。
正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬苗体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。
免疫学在医学上极为重要,已有相当长的历史。按照一个基因一种酶假设,一个生物为什么能产生无数种类的免疫球蛋白,这本身就是一个分子遗传学问题。自从澳大利亚免疫学家伯内特在 1959年提出了克隆选择学说以后,免疫机制便吸引了许多遗传学家的注意。目前免疫遗传学既是遗传学中比较活跃的领域之一,也是分子遗传学的活跃领域之一。
在分子遗传学时代另外两个迅速发展的遗传学分支是人类遗传学和体细胞遗传学。自从采用了微生物遗传学研究的手段后,遗传学研究可以不通过生殖细胞而通过离体培养的体细胞进行,人类遗传学的研究才得以迅速发展。不论研究的对象是什么,凡是采用组织培养之类方法进行的遗传学研究都属于体细胞遗传学。人类遗传学的研究一方面广泛采用体细胞遗传学方法,另一方面也愈来愈多地应用分子遗传学方法,例如采用遗传工程的方法来建立人的基因文库并从中分离特定基因进行研究等。
一定的规律
遗传是有一定的规律的,是在规律里是随机发生的,不是什么情况都会发生,有一定的规律.
- 文章作者:百家乐
- 本文网址:http://www.ikepu.com/biology/biology/branch/genetics_total.htm
- Tags: 遗传学